Quasi-Stationary Distributions for Markov Chains

Hanjun Zhang

School of Mathematics and Computational Science Xiangtan University hjz001@xtu.edu.cn

Talk in The 16th Workshop on MPRT, July,16,2021

 $2Q$

 $4 \n n \n 4 \n 4$

NATIONAL

Outline of Topics

1 [Quasi-stationary distributions \(QSDs\)](#page-2-0)

 PQQ

目

 $\langle 1 \rangle$ + $\langle 1 \rangle$ +

QSDs

A Quasi-Stationary Distribution (in short QSD) for X is a probability measure supported on $(0, \infty)$ satisfying for all $t > 0$,

$$
\mathsf{P}_\nu(\mathsf{X}(\mathsf{t})\in\mathsf{A}|\mathsf{T}>\mathsf{t})=\nu(\mathsf{A}),\,\,\forall\,\,\text{borel}\ \ \text{set}\ \ \mathsf{A}\subseteq (0,\infty).
$$

where

$$
T=\inf\{t\geq 0, X(t)=0\}
$$

 $2QQ$

目

 $4\Box$ \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow

QSDs

A Quasi-Stationary Distribution (in short QSD) for X is a probability measure supported on $(0, \infty)$ satisfying for all $t > 0$,

$$
\mathsf{P}_\nu(\mathsf{X}(\mathsf{t})\in \mathsf{A}|\mathsf{T}>\mathsf{t})=\nu(\mathsf{A}),\,\,\forall\,\,\text{borel}\ \ \text{set}\ \ \mathsf{A}\subseteq (0,\infty).
$$

where

$$
\mathcal{T}=\inf\{t\geq 0, X(t)=0\}
$$

By the definition, a QSD is a fixed point of the conditional evolution.

 $4\Box$ \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow

 \equiv

QSDs

• A Quasi-Stationary Distribution (in short QSD) for X is a probability measure supported on $(0, \infty)$ satisfying for all $t > 0$,

$$
\mathsf{P}_\nu(\mathsf{X}(\mathsf{t})\in \mathsf{A}|\mathsf{T}>\mathsf{t})=\nu(\mathsf{A}),\,\,\forall\,\,\text{borel}\ \ \text{set}\ \ \mathsf{A}\subseteq (0,\infty).
$$

where

$$
T = \inf\{t \geq 0, X(t) = 0\}
$$

- By the definition, a QSD is a fixed point of the conditional evolution.
- **It is not hard to show if such** ν **exist then**

$$
\mathsf{P}_\nu(\mathsf{T}>\mathsf{t})=\mathrm{e}^{-\mu \mathsf{t}}
$$

for some $\mu \in (0, \infty)$.

 $4\Box$ \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow

QSDs

• A Quasi-Stationary Distribution (in short QSD) for X is a probability measure supported on $(0, \infty)$ satisfying for all $t > 0$,

$$
\mathsf{P}_\nu(\mathsf{X}(\mathsf{t})\in \mathsf{A}|\mathsf{T}>\mathsf{t})=\nu(\mathsf{A}),\,\,\forall\,\,\text{borel}\ \ \text{set}\ \ \mathsf{A}\subseteq (0,\infty).
$$

where

$$
T = \inf\{t \geq 0, X(t) = 0\}
$$

- By the definition, a QSD is a fixed point of the conditional evolution.
- It is not hard to show if such ν exist then

$$
\mathsf{P}_\nu(\mathsf{T}>\mathsf{t})=\mathrm{e}^{-\mu \mathsf{t}}
$$

for some $\mu \in (0, \infty)$.

A QSD must be infinitely divisible (D.[Ver](#page-4-0)e[-J](#page-6-0)[o](#page-1-0)[n](#page-2-0)[e](#page-5-0)[s](#page-6-0) [1](#page-1-0)[9](#page-2-0)[69](#page-13-0)[\)](#page-1-0)

 Ω

• A probability measure π supported on $(0, \infty)$ is a LCD If there exists a probability measure ν on $(0, \infty)$ such that the following limit exists in distribution

$$
\lim_{t\to\infty} \mathbf{P}_{\nu}(\mathbf{X(t)}\in\bullet\mid\mathbf{T}>t)=\pi(\bullet).
$$

We also say that ν is attracted to π or is in the domain of attraction of π or π is a *ν*-LCD

 4 \Box \rightarrow 4 \Box \rightarrow 4 \Box \rightarrow 4 \Box \rightarrow

 $2Q$

• A probability measure π supported on $(0, \infty)$ is a LCD If there exists a probability measure ν on $(0,\infty)$ such that the following limit exists in distribution

$$
\lim_{t\to\infty} \mathbf{P}_{\nu}(\mathbf{X}(t)\in \bullet\mid \mathbf{T}>t)=\pi(\bullet).
$$

We also say that ν is attracted to π or is in the domain of attraction of π or π is a *ν*-LCD

• Trivially, any QSD ν **is an** ν **-LCD.**

 4 \Box \rightarrow 4 \Box \rightarrow 4 \Box \rightarrow 4 \Box \rightarrow

• A probability measure π supported on $(0, \infty)$ is a LCD If there exists a probability measure ν on $(0,\infty)$ such that the following limit exists in distribution

$$
\lim_{t\to\infty} \mathbf{P}_{\nu}(\mathbf{X}(t)\in \bullet\mid \mathbf{T}>t)=\pi(\bullet).
$$

We also say that ν is attracted to π or is in the domain of attraction of π or π is a *ν*-LCD

- **Trivially, any QSD** ν **is an** ν **-LCD.**
- The ν -LCD is a QSD (Vere-Jones(1969)).

イロト イ団 トイヨト イヨト

 OQ

• A complete treatment of the QSD problem for a given family of processes should accomplish three things:

 $4\Box$ \rightarrow \overline{AB} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow \overline{B} \rightarrow

目

 OQ

- A complete treatment of the QSD problem for a given family of processes should accomplish three things:
- (i) determination of all QSD's; and

 $4\Box$ \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow

 \equiv

- A complete treatment of the QSD problem for a given family of processes should accomplish three things:
- (i) determination of all QSD's; and
- (ii) solve the domian of attraction problem, namely, characterize all probability measure ν such that a given QSD M is a ν -LCD.

イロト イ団 トイヨト イヨト

- A complete treatment of the QSD problem for a given family of processes should accomplish three things:
- (i) determination of all QSD's; and
- (ii) solve the domian of attraction problem, namely, characterize all probability measure ν such that a given QSD M is a ν -LCD.
- (iii) The rate of convergence of the transition probabilities of the conditioned process to their limiting values.

 $4\Box$ \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow

 OQ

• Both (i) and (ii) are known only for finite Markov processes, and for the subcritical Markov Branching Process(MBP)

 $\langle 1 \rangle$ + $\langle 1 \rangle$ +

 \equiv

- Both (i) and (ii) are known only for finite Markov processes, and for the subcritical Markov Branching Process(MBP)
- For a Birth and death process, Erik A. VAN DOORN (Adv.Appl.Prob.23, 683-700,1991) obtained Proposition (i) if $S = \infty$, then either λ_C (Kingman's decay parameter $)=0$ and there is no QSD, or $\lambda_c > 0$ and there is a one-parameter family of QSDs, Viz, $\{q_i(x)\}, 0 < x \leq \lambda_C\}$. (ii) If $S < \infty$, then $\lambda \subset 0$ and there is precisely one QSD , Viz, $\{q_i(\lambda_C)\}$

 $2Q$

 $4\Box$ \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow

• Let X_t be a continuous-time Markov chain in $I = \{0\} \cup \{1, 2, \ldots\}$ such that 0 is an absorbing state. Let $C = \{1, 2, ...\}$. Denote by $Q = (q_{ii})$ the q-matrix (transition rate matrix) and $P(t)=(P_{ij}(t))$ the transition function. X_t is stochastically monotone if and only if $\sum_{j\geq k} P_{ij}(t)$ is a nondecreasing function of *i* for every fixed $k \in I$ and $t > 0$. We assume that all states other than 0 form an irreducible class and that Q is totally stable, conservative and regular, that is, $q_i = \sum_{i \neq j} q_{ij} < \infty,$ and the minimal process ${X_t}_{t>0}$ corresponding to Q is an honest process. We further define $T = \inf\{t \ge 0 : X_t = 0\}$, the absorption time at 0. So $X_t = 0$ for any $t > T$.

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

 Ω

For continuous-time general Markov chains, P.A.Ferrari, H.Kesten,S.Martinez, and P.Picco (The Annals of Probability 1995,Vol.23, No.2,501-521.) obtained Proposition 2 Assume that

$$
\lim_{i\to\infty} P_i(T
$$

and that $P_i(T < \infty) = 1$ for some (and hence all) *i*. Then a necessary and sufficient condition for the existence of a QSD is that

$$
E_i(e^{\theta \mathcal{T}})<\infty
$$

for some $\theta > 0$ and some $i \in \mathcal{C}$ (and hence for all i).

 Ω

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

• Our result is Theorem 1 Assume that

$$
\lim_{i\to\infty}E_iT=\infty,
$$

and that $P_i(T < \infty) = 1$ for some (and hence all) *i*. Then a necessary and sufficient condition for the existence of a QSD is that

$$
E_i(e^{\theta T}) < \infty
$$

for some $\theta > 0$ and some $i \in C$ (and hence for all i). When it holds, There exists a family of QSDs.

 Ω

 $4\Box$ \rightarrow \overline{AB} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow \overline{B} \rightarrow

For stochastically monotone Markov chains, we discuss the existence, uniqueness and domain of attraction of QSDs. Theorem 2 Assume Q is regular and conservative, and X_t is stochastically monotone,

(i) If $\lim_{i\to\infty} E_iT = \infty$, then there exists a QSD if and only if

$$
E_i(e^{\theta T}) < \infty
$$

for some $\theta > 0$ and some $i \in \mathcal{C}$ (and hence for all i). (ii) If $\lim_{i\to\infty} E_i \mathcal{T} < \infty$, and the set $N_0 = \{i \in \mathcal{C} : q_{i0} > 0\}$ is finite, then there is a unique QSD .Moreover, the unique QSD $\rho=\{\rho_j, j\in \mathcal{C}\}$ attracts all initial distributions that supported in C, that is, for any probability measure $\nu = \{\nu_i, i \in \mathcal{C}\},$ $\rho_i = \lim_{t \to \infty} P_{\nu}(\mathbf{X}_t = \mathbf{i} | \mathbf{T} > \mathbf{t}), \quad \mathbf{j} \in \mathbf{C}.$

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

 $2Q$

Thank you all for your attention!

 $2QQ$

É

 $\left(\frac{1}{2} + \$

 \rightarrow \equiv \rightarrow